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Abstract: The spatial variability of typhoid disease incidences has not been accounted for, most especially in developing 

countries, which makes its surveillance inefficient and expensive. This research aimed at (i) exploring possible risk factors of 

typhoid disease and (ii) accounting for spatial variability of typhoid disease incidences using GWR approach. The research first 

explored possible risk factors of typhoid disease using global regression-Ordinary Least Squares (OLS). Geographically 

Weighted Regression (GWR) model was used to account for spatial variability of typhoid disease incidences. Moran’s Index was 

used to confirm spatial patterns in the data. The research revealed that; poor handwashing practice, rainfall and poor drainage 

(floods effect) were responsible for spatial variability of typhoid disease locally (P<0.05). GWR model revealed that poor 

handwashing practice was mainly responsible for typhoid disease occurrences in Northern, Northwestern and Mid-central parts 

of the country while excessive rainfall was mainly responsible for occurrence of the disease in the Eastern and Western regions. 

Poor drainage was mainly influencing disease occurrences in Eastern and Southwestern parts of the country. In the analysis, 

GWR model performed better than global OLS model (R-squared=0.37, R-squared=0.25 respectively). A combination of poor 

handwashing practice, excessive rainfall and poor drainage accounts for spatial variability of typhoid disease incidences in 

Uganda. This knowledge is very essential for surveillance teams to (i) enforce preventive measures, (ii) prepare for outbreaks and 

(iii) make targeted interventions to eventually reduce operational costs. 

Keywords: Geographically Weighted Regression (GWR), Global Regression, Ordinary Least Squares (OLS), Typhoid, 

Uganda 

 

1. Introduction 

Typhoid disease has remained a global burden, influenced 

by various environmental and demographic factors most 

especially in developing countries of Africa and Asia. It is 

estimated that between 11 and 21 million cases of typhoid 

disease occur globally, causing between 128000 to 161000 

death, most especially children and elderly [1]. In Uganda, 

almost all districts are typhoid endemic most especially in 

urban areas [2]. It is caused by “salmonella typhi” bacteria 

whose reservoir is humans. Its route of transmission is faecal 

contamination of water and food due to poor waste disposal. 

Although the disease is transmitted by faecal contamination of 

water and food, the routes leading to contamination differ 

from area to area [3]. 

Research studies have associated typhoid disease 

occurrences with many environmental and demographic 

factors. Mirembe et al. [4] associated the disease with poor 

sanitation and hygiene in the Ugandan district of Kasese. It 

was also found to be associated with poor handwashing 

practice in Fiji [5]. Another study in Kenya revealed that 

topography of areas was a risk factor, where people in valleys 

were more at risk than those on hills [6]. Another study by 
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Breiman et al. [7] associated the disease with urbanization in 

Kenya, where the disease was more pronounced in towns than 

in villages. Poor drainage and floods were also associated with 

typhoid disease in Fiji [8]. Rainfall and temperature were 

correlated with typhoid disease incidences in Bangladesh [9], 

and more others as presented in table 1. According to Crump 

[3], these risk factors differ at global, regional, national and 

sub-national levels. This shows that to get reliable results 

about the disease, models that cater for local spatial 

variabilities of such risk factors should be used [10, 11]. 

Many research studies at local level have used the 

conventional global regression approach-Ordinary Least Squares 

(OLS)- to explore epidemiological characteristics of typhoid 

disease. This is an approach that describes the whole study region 

with one equation [12]. If the phenomenon being studied is 

uniform across the whole area of study, the model gives reliable 

results. But if the phenomenon being studied varies across 

geographic space, the model gives biased and unreliable results 

[13]. Typhoid disease incidences and its risk factors vary across 

geographic space and there is no research that has accounted for 

its spatial variability locally. This called for application of 

Geographical Information Systems (GIS) to cater for the local 

variabilities of the disease to give improved results. 

Geographically Weighted Regression (GWR) approach is 

one of the GIS approaches that is used to explore phenomena 

across geographic scope while catering for spatial variabilities. 

It is an approach where every spatial unit in the area of study 

has its own independent equation [12]. This unique and 

powerful feature enables GWR models to account for spatial 

variabilities of events such as disease incidences across the 

areas under study. However, according to Charlton & 

Fotheringham [14], precautions should be taken before fitting 

GWR models. Spatial dependence must first be confirmed in 

the data before using the model: otherwise, the model can give 

incorrect and misleading results. The model can also be affected 

by multi-collinearity amongst covariates and bandwidth [15]. 

This research aimed at (i) exploring possible risk factors of 

typhoid disease and (ii) using GWR approach to account for 

spatial variability of typhoid disease incidences in Uganda. 

This knowledge is very essential in planning and 

decision-making during surveillance, where authorities can 

enforce preventive measures, plan for outbreaks and make 

targeted interventions to reduce operational costs. 

2. Materials and Methods 

2.1. Study Area 

Uganda is one of the countries of Africa with a current 

population of approximately 44.27 million people and 241,038 

Square Kilometers of land (WPR Report, 2019). Figure 1 shows 

the map of Ugandan with 2012 district boundaries [16]. 

2.2. Data Sources 

A total of clinically confirmed 1,263,923 typhoid disease 

cases for the period 2012 to 2017 were obtained from Uganda 

Ministry of Health (MOH). To protect patients’ identities and 

avoid breach of patients’ data confidentiality law, disease cases 

were collected already aggregated and organized per month per 

district. The Uganda shape files and population data were 

obtained from Uganda Bureau of Statistics (UBOS). 

Environmental data, that is, average rainfall, average maximum 

temperature and average minimum temperature was obtained 

from Uganda National Metrological Authority (UNMA). The 

data was collected by 18 weather stations, well identified for 

national representation. This was monthly data collected from 

2012 to 2017. Basing on the available data, the variables that 

were investigated, their descriptions, literature references and 

respective data sources are summarized in table 1. 

Data Pre-Processing 

Clinical Data 

To avoid population effect, total disease incidences per 

district were computed for the period 2012 to 2017 and then 

corrected to the population to give disease incidence rates per 

district using the formular: 

�������	����	����	
���	�
����_�������� � �������������� !"����  (1) 

Where 
����_������� is the disease incidence rate for 

district i, #���	�����  is the average disease incidence of 	���
����  and $%�&'���%��  is the average population of 	���
����  for the period 2012 to 2017. 

 

Figure 1. Map of Uganda and district boundaries. 

Environmental data 

Environmental data was collected by 18 stations well 

distributed nationally and Ordinary Kriging method of 

interpolation under ArcGIS platform was used to estimate 

weather values for each district. According to Ozturk and 
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Kilic [22], ordinary Kriging uses the formular 

(�)*� � ∑ ,�-�./ (�)��              (2) 

Where (�)�� is the measured value at the �"0 location, ,� 
is the unknown weight for the measured value at the �"0location, )* is the prediction location and N is the number 

of measured values. From formular 2, the average rainfall, 

average maximum temperature and average minimum 

temperature for each of the districts were determined. 

Demographic data 

This data was collected already organized per district and 

did not require pre-processing. This was data about annual 

district populations, hygiene, topography, urbanization and 

poor drainage (floods). 

2.3. Methods 

The general mapping, exploratory regression and 

Geographically Weighted Regression (GWR) were done using 

ArcGIS software (version 10.5, ESRI Inc.; Redlands, CA, 

USA). The overall research methodology has been organized 

under three categories; (i) Exploratory regression and Model 

selection, (ii) Global regression (OLS) and Geographically 

Weighted Regression. 

Table 1. Exploratory variables of the study. 

S/N Variable Description 
Risk factor 

studied 

Literature 

References 

Data 

Source 

1 HH_wash Percentages of households that practice hand washing per district. Hygiene [5, 17, 18] UBOS 

2 PH_lands Percentages of households that stay in highlands per district Topography [6] UBOS 

3 Urban_Level Percentages urbanization level per district Urbanization [7, 19, 20] UBOS 

4 ARainfall Average annual rainfall for period 2012 to 2017 per district Rainfall [8, 9, 11, 20] UNMA 

5 Temp_Max Average annual maximum temperature for period 2012 to 2017 per district Temperature [9, 11] UNMA 

6 Temp_Min Average annual minimum temperature for period 2012 to 2017 per district. Temperature [9, 11] UNMA 

7 Pn_Floods Percentages of households affected by floods per district. Poor drainage [8, 20] UBOS 

8 Hhsize Average household size per district Household size [21] UBOS 

9 ATypy_Rates 
Typhoid Disease Incidence Rates per district (cases per unit population) 

from 2012 to 2017. 

N/A (Dependent 

variable) 

N/A (Dependent 

variable) 
Computed 

 

2.3.1. Exploratory Regression and Model Selection 

Exploratory Regression (with all variables in table 1) and 

model selection were performed using ArcGIS with 

ATypy_Rates as a dependent variable while the rest of the 

variables as independent variables. The purpose of this task was 

to establish (i) variables that have significant influence on 

typhoid incidence rates, (ii) spatial influence in the data sets and 

(iii) best possible models. Under ArcGIS platform, 

multi-collinearity among explanatory variables is automatically 

detected. The possible models are suggested with their 

respective parameter values. Multi-collinearity affects 

performance of regression models and is measured by Variance 

Inflation Factor (VIF) parameter whose value must be less than 

7.5 to avoid its effects. The parameter that was used for model 

selection was Corrected Akaike Information Criterion (AICc), 

and the results of exploratory regression and model selection 

are presented in table 2 and table 3 respectively. 

2.3.2. Global Regression 

Global regression is a statistical modelling method that is 

used to study the influence of one or many independent 

variables on a dependent variable [23]. If 1/, 12, ……, 1� 

are n independent variables and � is the dependent variable in 

the study, 

� � 3* +	3/1/ +	3212 + ⋯	3�1� + 	6    (3) 

Where 3�7� are the coefficients and 6 is the random error 

term in the equation, 8~:�0, =2�. 

This method uses a technique of Ordinary Least Squares 

(OLS) sometimes referred to as the Best Linear Unbiased 

Estimator (BLUE). According to Cheng and Jian [24], 

8 � ∑ ��� − ?����./ ,                (4) 

Where ?�  are observed ?  data points while ��  are the 

regressed Y data points and �	is the number data points used 

on the regression line. This technique aims at minimizing 

errors in the dependent variable to get the best estimates. OLS 

techniques work with the following assumptions; 

(i) The random errors have a mean of 0, (ii) the random errors 

have constant variance and are uncorrelated, and (iii) the 

random errors have normal distribution. If any of the above 

assumptions is not fulfilled, global OLS model becomes biased 

and the coefficients become inefficient. This modelling 

approach was used to validate the GWR model by comparing 

results of both models and results are presented in table 5. 

2.3.3. Geographically Weighted Regression 

According to Comba, et al. [25], the general standard 

regression model for spatial data is 

�� � 3* +	∑ 3@A@./ 1�@ +	6�            (5) 

Where � � 1, 2, … , �  are observation indices, ��  is the 

dependent variable, 1�@  is the value of the E"0  independent 

variable, F is the number of independent variables. 3* is the 

intercept term, 3@  is the regression coefficient for the E"0independent variable and 6� is the random noise. This model 

treats all observations with equal weights and does not consider 

local variability in different spatial units [26]. According to Xiao, 

et al. [27], GWR model therefore extends this model by adding 

geographical coordinates, and equation 5 becomes: 

�� � 3*�&�, G�� +	∑ 3@�&� , G� 	�1�@A@./ +	6�     (6) 
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Where �&� , G�� are the geographical coordinates of the �"0 

observation, 3@�&� , G��  is the realization of the continuous 

function 3@�&, G� at point �. 
According to Oshan and Fotheringham [13], the model uses 

weighted least estimation to compute a set of coefficients for 

all independent variables of every spatial unit. The matrix 

form of this set of coefficients is: 

3H��� � IJ7K���JLM/J7K�����         (7) 

Where 3H��� is a vector of coefficients, J is the matrix of 

independent variables, J7  is the transpose of matrix J , K��� � 	��NIO/���, … … . , O����L  is a diagonal matrix of 

weights of each observation based on its distance from spatial 

unit �, and ��is a vector of observations of dependent variable. 

The weights matrix of the observations is computed by a 

kernel function using equation 8. 

K@��� � QR1 −	S��TU V2W20, �X	E ∉ {:�} , �X	E8{:�}        (8) 

Where 	�@  is the distance between locations � and E, b is 

the distance between the :"0 nearest neighbor and {:�} is a 

set of all observations that are no more than b distance from �. 
From equation 8, an observation at location � would have a 

weight of 1 and an observation that is farther than distance d 

would have a weight of 0. 

GWR models require optimal estimation of number of 

nearest neighbors, which is used to estimate parameter b in the 

kernel function before fitting the model. This is the bandwidth 

estimation. There are two types of kernels in the weighting, 

that is, fixed and adaptive. For a fixed kernel, distance is fixed 

but the number of neighbors varies where Gaussian function 

becomes secure and better. With adaptive kernel, distance 

varies but the number of neighbors remains constant, where 

the use of bisquare kernel function is recommended. 

Regardless of the type of kernel used, if regression points are 

evenly distributed, a bisquare function becomes better [27]. 

In the GWR models, Akaike Information Criterion (AICc) 

is used as a minimization routine to select optimal bandwidth 

for goodness-of-fit of the model. AICc of the model is 

computed by: 


#\� � 2� log�� à� + � log��2b� + � c �d"e�f��M2M"e�f�g, (9) 

Where � is the number of spatial units, à is the standard 

deviation of the error term and �
��� is the trace of the hat 

matrix [13]. 

After specifying the bandwidth, the weights matrix is 

computed by the kernel function using equation (8), a GWR 

model can then be fitted to compute local coefficients using 

equation (7) and the average of local coefficients of 

determination ��2 gives the overall �2 of the model. 

3. Research Results 

Results of this study are presented using three themes (i) 

Exploratory regression and model selection results (ii) Global 

regression Results and GWR Results. 

3.1. Exploratory Regression and Model Selection Results 

The exploratory OLS regression under ArcGIS platform 

with ATypy_Rates as a dependent variable while the rest of the 

variables in table 1 as independent variables yielded the 

results presented in table 2. 

Table 2. Results of Exploratory Regression. 

S/N Variable Coefficient Moran’s I VIF P-Value 

1 Intercept -598.7621 - - 0.4613 

2 HH_Wash -89.4560 0.2107 1.30 0.0002 

3 ARainfall 24.30 0.7092 1.12 0.0443 

4 Pn_Floods 416.46 0.3666 1.68 0.0088 

5 Temp_Max 208.72 0.8371 2.48 0.3570 

6 Urban_level 79.24 0.1174 1.65 0.0180 

7 Temp_Min 13.19 0.7432 4.09 0.9611 

8 Hhsize 664.19 0.0395 1.16 0.0381 

9 PH_lands -198.96 0.6925 2.24 0.0462 

10 ATypy_Rates (dependent variable)  - - 

Table 3. Possible models, parameter values and model variables using ArcGIS. 

AdjR2 AICc JB K (BP) VIF Possible Models 

0.26 1793.75 0 0.21 1.48 -HH_Wash +ARainfall + Pn_Floods 

0.23 1795.3 0 0.13 1.1 -HH_Wash +ARainfall-Temp_Min 

0.24 1793.94 0 0.04 1.12 -HH_Wash +ARainfall-Temp_Max 

 

From table 2, HH_Wash and PH_lands have negative 

correlation with typhoid disease incidence rates while the rest 

of the variables have positive correlation with the disease rates. 

Variables HH_Wash, ARainfall, Pn_Floods, Urban_level, 

Hhsize and PH_lands are significant (P<0.05) while the rest of 

the variables are insignificant (P> 0.05). All variables have a 

positive Moran’s Index value which confirms spatial 

dependence in the datasets and this called for spatial 

approaches such as GWR to solve the problem. All values of 

VIF are far less than 7.5 threshold which implies that there is 

no any risk of multi-collinearity amongst covariates. All 

significant variables were subjected to model selection and the 



` International Journal of Health Economics and Policy 2021; 6(2): 56-64 60 

 

possible models are presented in table 3. 

In table 3, AdjR2 is the, AICc is Akaike’s Information Criterion, 

JB is the Jarque-Bera’s p-value, The adjusted R-squared statistic is 

used as a measure of model fit, the bigger its value, the better the 

model fit. AICc is used for comparing performances of different 

models. The model with lest value of AICc is always the best. The 

JB statistic is used to test for normality of residuals in the OLS model. 

Since the value of JB statistic is positive and significant (P < 0.05), it 

confirmed non-normality of the residuals in the model which violets 

assumptions of OLS models stated in section 2.3.2. This implies that 

the OLS model coefficients are biased and unreliable. 

Breusch-Pagan K (BP) test was significant (P < 0.05) implying that 

there was heteroscedasticity in the data due to spatial effects and 

which also called for the application of GWR modelling to cater for 

the local spatial effects for improved and reliable results. 

From table 3, the best model for further spatial diagnosis 

was the one with the least AICc or highest AdjR2 values with 

variables HH_Wash, ARainfall and Pn_Floods. The OLS 

equation is presented as equation 10. 


����_���� = 3* − 3/hh_K��ℎ + 3j
����X�'' +

3k$�_l'%%	� + 	6,             (10) 

where 3/	, 32, … . , 3k  are variable coefficients and 6  is the 

error term. 

3.2. Global Regression Results 

Global regression (OLS) in equation 10 was fitted under 

ArcGIS platform and the results are presented in table 4. 

Table 4. Global regression Results. 

Variable Coefficient Std. Error Z-Value P-Value 

Constant 1525.95 810.98 1.88 0.05 

HH_Wash -30.0003 7.05 -4.25 0.00 

ARainfall 11.8547 5.02 2.35 0.02 

Pn_Floods 40.1585 14.42 2.78 0.01 

AICc=1996.0661 

R-squared=0.2491, Adjusted R2=0.2282 

From table 4, all the three covariates HH_Wash, ARainfall 

and Pn_Floods were significant (P<0.05) and the constant 

term was insignificant (P>0.05). HH_Wash was negatively 

correlated with disease incidence rates (ATypy_Rates). 

ARainfall and Pn_Floods were positively correlated. 

3.3 Geographically Weighted Regression Results 

From equation 8, the GWR model that was finally fitted 

under ArcGIS platform is: 


����_����(�) = 3*�(&� , G�) + 	3/�(&� , G�)hh_K��ℎ� +

	32�(&� , G�)
����X�''� +	3j�(&� , G�)$�_l'%%	�� +	6� (11) 

Where � = 1, 2, 3, … . , 112,  (number of districts), 

3*�(&� , G�) is constant for district with coordinates (&� , G�), 

3/� is a coefficient of HH_Wash covariate for district �, 32� is 

a coefficient of ARainfall covariate for district � and 3j� is a 

coefficient of Pn_Floods covariate for district �. 

A fixed kernel was used due to its slightly higher model fit 

(R2=0.37) compared to adaptive kernel (R2=0.35) and AICc 

was used for optimal bandwidth selection. There was improved 

model fitting with GWR model compared to classic global OLS 

regression model and the results are presented in table 5. 

Table 5. Results of fitted GWR and Global Regression models. 

Parameter Fitted GWR Model OLS Model 

AICc 1785.29 1996.07 

R2 0.37 0.25 

Adjusted R2 0.31 0.23 

From table 5, it is evident that GWR model had a better 

model fit than the global regression (OLS) model due to its 

lower AICc value of 1785.3 compared to AICc of OLS model 

of 1996.1. This is again consistent with R-squared parameter. 

GWR model has much higher R-squared of 0.37 compared 

with 0.25 for global OLS model. The spatial variability of the 

coefficients of GWR model are presented in figures 2, 3 and 4. 

From figure 2, it is evident that poor handwashing practice 

is mainly responsible for typhoid disease occurrences in the 

Northern and Central parts of the country. This influence of 

the disease can also be observed in Southeastern parts of the 

country. 

Figure 3 shows that excessive rainfall is responsible for most 

typhoid disease occurrences in the Eastern and Southwestern 

parts of the country. Lower influences can also be seen in 

mid-central, Southern and Northeastern parts of the country. 

Figure 4 shows that poor drainage (floods effect) is mainly 

responsible for typhoid disease occurrences in both Eastern 

and Southwestern parts of the country. Significant influences 

can also be seen in the Central parts of the country. This factor 

influences the disease least in Northen parts of the country. 

Figure 5 continues to present spatial variability of predicted 

disease incidence rates by GWR model. 

 

Figure 2. Spatial variability of coefficient of HH_Wash. 
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Figure 3. Spatial variability of coefficient of ARainfall. 

 

Figure 4. Spatial variability of coefficient of Pn_Floods. 

From figure 5, the model predicted high incidences in 

Southern, South-Western and Eastern parts of the country. The 

Northern part of the country is predicted to have least 

incidences of the disease. 

 

Figure 5. Spatial variability of predicted disease incidence rates by GWR 

model. 

The GWR model was evaluated by using out-of-sample 

data technique. The model was fitted with data from 2012 to 

2017. The spatial patterns of the actual clinical data of 2018 

(out-of-sample data) were compared with spatial patterns of 

the predicted values of GWR model using Moran’s Index, the 

results are presented in table 6. 

Table 6. Spatial patterns for predicted values of GWR model and those of 

actual clinical data of 2018. 

Datasets Moran’s I Variance P – value 

Predicted values 0.117 0.0290 0.030 

Actual clinical data of 2018 0.076 0.0023 0.047 

Table 6 shows that the predicted values and actual values of 

2018 have positive and significant autocorrelation values 

(Moran’s I=0.117, P=0.03) and (Moran’s I=0.076, P=0.047) 

respectively. These values are almost the same which is a 

characteristic of a good model. The spatial patterns are again 

presented graphically in figure 6. 

 

Figure 6. Spatial patterns of out of sample data and those of predicted 

incidences of GWR model. 
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Figure 6 shows that the patterns are close, implying that 

GWR model is capable of identifying both high and low-risk 

areas which is the major property of good models. The results 

are discussed in the next section. 

4. Discussion 

This research aimed at (i) exploring possible risk factors 

of typhoid disease and (ii) using GWR approach to account 

for spatial variability of typhoid disease incidences in 

Uganda. 

The study revealed that typhoid disease occurrence is 

influenced by many demographic and environmental risk 

factors. There was a negative and significant relationship 

between typhoid disease incidences and handwashing 

(P<0.05). This implies that handwashing practice 

significantly reduces the risk of typhoid infection. Similarly, 

the populations that stay in highlands were at a lower risk of 

getting typhoid disease than those that stayed in valleys. 

Rainfall, Floods, Urbanization level and household size were 

revealed to have positive and significant influence on the 

occurrence of the disease (P<0.05). This implies that districts 

that receive high rainfall and affected by floods were at high 

risks of getting the infection. Also districts with high 

proportions of populations in towns were at a higher risk of 

getting infected by the disease. Average household size 

yielded a positive significant relationship with typhoid 

disease (P<0.05). This is because household size directly 

affects hygiene and sanitation due to increased costs of 

disposal and living requirements. These increased costs are 

usually unaffordable to many households, consequently 

increasing disease risk. The research did not find significant 

relationship between typhoid disease incidences with 

temperature (both average maximum and minimum) 

(P>0.05). 

GWR model results revealed that the disease occurrence 

in different areas is influenced by different factors. Figure 2 

shows that most of typhoid disease occurrences in the 

Northern, Mid-Central and South-Eastern parts of the 

country was as a result of poor handwashing practice in those 

areas. This fact was gain evidenced by Hirai et al. [28] that 

poor handwashing practice in these areas opens the route of 

disease transmission to eventually penetrate the population. 

In addition, it is reported that these areas have higher 

proportions of drinking surface water without treatment and 

open defecation, which are additional routes of disease 

transmission. A combination of these factors provides 

conducive environments for easy spread of harmful bacteria 

including salmonella typhi (bacteria that causes typhoid) 

[28]. 

From figure 3, the model revealed that excessive rainfall 

was highly influencing typhoid disease occurrences in Eastern 

and Southwestern regions of the country. From figure 7, these 

are mountainous areas. The Eastern region includes Mount 

Elgon and the Southwestern region includes Mount Rwenzori 

and Mount Mufumbiro [29]. 

In figure 4, the model associates much of the typhoid 

incidences in the Eastern, Western and Central parts of the 

country to the effect of floods. When it rains, floods mainly 

affect high population densities in valleys and this was 

revealed by other studies [30]. From figure 7, Mount Elgon is 

surrounded by districts Bududa, Bulambuli, Mbale, Sironko, 

Manafwa, Bukwo, Kween and Kapchorwa. These districts 

are affected by floods and mudslides every year, which has 

resulted into temporally camps and permanent relocations. 

Poor conditions in these camps every year result into 

waterborne diseases including typhoid [31]. 

 

Figure 7. A map of Uganda altitudes (Source: [29]). 

Figure 4 also indicate high effect of floods in 

Southwestern region. These are mountainous areas 

characterized by cultivation in the hillsides and human 

settlements largely in valleys. The highest densities in these 

valleys are severely affected by floods eventually 

contaminating water sources. The Southern and Central parts 

of the country have high rate of urbanization (including 

capital city Kampala), where many settlements have taken 

place without proper planning. People have settled in 

wetlands, cut vegetation on hilltops and hillsides, blocked 

waterways and many households are affected by floods. 

These floods destroy, fill-up latrines and sewage reservoirs 

eventually contaminating water sources. This fact was 

reported by other researchers [32]. Many research studies 

have also associated floods with typhoid disease and other 

waterborne diseases [4, 33, 34]. 

From table 5, GWR model performed better than OLS 

regression model (R
2
=0.37, R

2
=0.25 respectively). This is 

because GWR model catered for local spatial variabilities of 

disease incidences and other covariates, which OLS model 

could not do. In Figure 5, the model predicted high incidences 

of the disease in Southern parts of the country. This came from 

the combination of the three risk factors: poor handwashing 

practice, high rainfall and the effect of excessive floods in 
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highly and ill-planned urbanized areas. 

Limitations of the Study 

(i) Some data could have been missed out as a result of 

some hospitals, health centers and clinics’ failure to 

submit their data to the national MOH database, which 

could have direct impact on the results. 

(ii) During treatment, some few district cross-border 

referrals could have occurred with chances of 

duplicating records in the system, and this could have 

some effects on the results. 

(iii) Some patients resort to self-medication without 

reporting to any health facilities, and such cases could 

have been missed out, which could have some effect 

on the results. 

5. Conclusions 

The main goal of the research was to (i) explore risk factors 

of typhoid disease and (ii) use GWR to account for spatial 

variability of typhoid disease incidences in Uganda. Global 

regression revealed that typhoid disease is influenced by many 

spatially varying environmental and demographic factors. 

GWR model revealed that poor handwashing practice 

influences typhoid disease mainly in Northwestern, Northern 

and Northeastern parts of the country. High rainfall was most 

responsible for disease incidences in the Eastern, Central and 

Southern parts of the country. Floods were mainly influencing 

disease in Western, Central and Southern parts of the country. 

A combination of poor hygiene, excessive rainfall and floods 

accounts for spatial variability of typhoid disease incidences 

in Uganda. In the study, GWR model performed better than 

OLS regression model. 

The research revealed that typhoid disease can be locally 

controlled through (i) promoting handwashing practice (ii) 

enforcing proper disposal to avoid contamination by 

excessive rainfall and (iii) well planned cultivation and 

settlements in both mountainous and urban areas to avoid 

blocking waterways, which is a major cause of poor drainage 

for water source contamination. This knowledge is very 

essential for concerned authorities to change most of the 

focus from treatment to prevention. It also helps authorities 

to effectively plan and effect targeted interventions, which 

eventually reduces costs of surveillance. The use of GIS 

explores spatially varying epidemiological characteristics of 

diseases to support targeted interventions and preventions. 

This eventually reduces surveillance costs and it should be 

the future direction most especially for the developing 

countries. 
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